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On the Simplified Hybrid-Combined Method* 

By Zi-Cai L-i** and Guo-Ping Liang*** 

Abstract. In order to solve the boundary value problems of elliptic equations, especially with 
singularities and unbounded domains, the simplified hybrid-combined method, which is 
equivalent to the coupling method of Zienkiewicz et al. [15], is presented. This is.a combina- 
tion of the Ritz-Galerkin and the finite element methods. Its optimal error estimates are 
proved in this paper, and the solution strategy of its algebraic equation system is discussed. 

1. Introduction. It has been shown to be advantageous to use a combination of the 
Ritz-Galerkin and finite element methods for the boundary value problems of 
elliptic equations, especially with singularities and unbounded domains which are, 
with difficulty, solved by the finite element method. A combination with the 
coupling trick of the simplified hybrid method is given in this paper. 

Let us consider the general elliptic equation 

(l l) tU=aTX TX) -ay pay) + cu f, (X, Y) eS 

with the Dirichlet boundary condition 

(1.2) u=g, (x,y) e , 
where S is a bounded and simply connected domain with the boundary r, the 
operator 

C=-axPax ay ay 
c 

the functions /B, c and f are sufficiently smooth, c = c(x, y) > 0, and /3 -, (x, y) > 

,8o > 0; here Po is a constant. 
The problem (1.1) and (1.2) can be expressed in a weak form 

(1.3) a(u, v) = f(v), v E Ho(S), 

where the true solution u E H'(S); the notations are 

(1.4) a(u, v) f[t (uxvx + uyvy) + cuv] 

(1.5) f(v) = fv, 
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14 ZI-CAI LI AND GUO-PING LIANG 

and the spaces are defined as 

(1.6) Ho'(S) = {v, v, vy E L2(S), v I ? 

(1.7) H'(S) {v, vx, vy E L2(S), v Jr g). 

As is well known, the finite element method is a procedure based on (1.3) for the 
admissible functions v in the subspace consisting of piecewise low-order interpola- 
tion polynomials, but the Ritz-Galerkin method is another procedure based on (1.3) 
for v in the subspace consisting of analytic functions or singular functions. The 
admissible functions in both procedures are defined on the total solution domain S. 

Let S be divided into two subdomains S, and S2 with a common boundary Jo. A 
combination of the Ritz-Galerkin and finite element methods is obtained if on one 
of the subdomains, for example, the boundary subdomain S,, piecewise low-order 
interpolation polynomials are taken as admissible functions, but on the other 
subdomain S2, analytic functions or singular functions are taken as admissible 
functions. Here, the key is how to couple two quite different methods on their 
common boundary To. A direct coupling trick was given by Li and Liang [7] where 
both kinds of admissible functions were directly constrained to be continuous only 
on the element nodes on Fo. 

As for the combination with the simplified hybrid trick in this paper, an 
important condition is 

(1.8) f=O onS2. 

Obviously, it holds for homogeneous equations u 0 O. Even for the nonhomoge- 
neous equation (1.1) which is satisfied by a particular solution u* on S2, if such a 
particular solution can be found, (1.1) reduces to 

&w = O onS2 

with a new variable w = u - u*. Hence, we assume that (1.8), i.e., 

(1.9) Eu=O onS2 

always holds in this paper. 
Define a space 

(l.lOa) H = {v E L2(S), v E H1(S1), v E H'(S2) and fv 0 O on S2), 

and its subspace 

(1.1Gb) Ho ={v EHandvj0}. 

Let Vho E Ho be a finite-dimensional collection of the functions such that, for 
V E Vh0 

(1) v Is, are piecewise low-order interpolation polynomials on a regular triangula- 
tion of S1 with the maximum boundary length h, 

V2 v S2 = 2'-aA, A 
where ai are unknown coefficients, {4j} are complete basis functions of linear 
independence. Such basis functions can be found in Bergman [1] and Vekua [14]. 

Moreover, let Vh E H be a finite-dimensional collection of the functions satisfy- 
ing (1) and (2) as well as v 1, = g. 
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Remark 1. For simplicity in analyses, here suppose that the functions v E Vh 
strictly satisfy the boundary condition (1.2); otherwise, the analyses are like Ciarlet 
[3] and Strang and Fix [11]. 

Under the condition of (1.8), the simplified hybrid-combined method is the 
procedure to find an approximate solution u* only in V,* such that 

(1.11) B(u*, w) = f(w), w E Vho 

where the bilinear form is (Figure 1) 

(I.12a) B(v, w) =f [f3vvvw + cvw] +f [Ivvvw + cvw] 

ff3 - __ 

+, a 2WI a W2V, 

i.e., 

(I 12b) B(v, w) = [f8vvvw + cvw] + I3an W2 + I[an w an v; 

the linear functional is 

(1.13) f(w) - fw; 
s, 

we use the notations 

VI = Vis, V2 = V IS2, 

and n is the normal to Fo shown in Figure 1. 

r / 

\~~~S r 

FIGURE 1 
The division of the solution domain 

The equivalence of (1. 12a) and (1. 12b) is derived from the following important 
equalities: 

(1.14) f[f3vvvw + cvwl anfw2 ` f an 22 an an~~V 
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for v E H and w E H. Eqs. (1.14) are easily proved from Green's theorem and the 
homogeneous equation (1.9) which is satisfied by the functions v E H and w E H. 

In (1.12), there is an additional integral on TO: 

raV2 a aW21 
(1.15) |resJ an a JnV 

which plays a role in coupling the Ritz-Galerkin method and the finite element 
method on lo. Eq.(1.11) is called the simplified hybrid-combined method because 
the integral form (1.15) is somewhat like that in the simplified hybrid-finite element 
method of Fix [5], Raviart and Thoms [9] and Tong, Pian and Lasry [13]. 

Now, let us prove the equivalence of (1.11) and the method of Zienkiewciz et al. 
[15]. 

Define a potential energy on H for (1.1) and (1.2): 

(1.16) 11(v) =I2f [13(Vv)2 + cv2] + 
I 

[/3(Vv)2 + cv2] 

-J[V2 -V1] - fV, 

with a Langrange multiplier X which is due to the noncontinuity of v on lo. It is 
reasonable to take the Lagrange multiplier X as 

(1.17) aV2 

because of the true value A =3(au/lan). Hence, an approximate solution v is 
obtained by minimizing the potential energy [15]: 

(1.18) H*(v ) = Min I*(v), 
V E= Vh* 

where we use the notation 

(1.19) nJ*(V) = [i(Vv)2 + cv2] + 2 ,[/3(VV)2 + cv2] 

-JIA an (V2-VI)-J fV, v E Vh. 

Performing the variation on (1. 18), we obtain 

(1.20) f [BVTvw + ciw] +1 [f3'vivw + cvYw] 

-{JI3~(W2 _ WI) ?J 2- i} JW 
{IOan IOan} IS 

forv E Vh* and Vw Ep Vh. 
The functions w2 and w1 in (1.20) are arbitrary and independent of each other. 

Then, we may let them be equal to zero, respectively, so that we obtain two 
equalities: 

(1.21) f [f3v vw + cvw] +J WI Jfw 
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and 

(1.22a) f [13vVw + cvw] -f an W2 IrOI8an;[i2 lO 

(1.22a) is written by applying (1.14) as 

(1.22b) f an W`2 + f 0. 

Therefore, the combined method (1.11) is obtained from (1.21) and (1.22b). Simi- 
larly, (1.18) can be obtained from (1.11). The equivalence of the method (1.11) and 
the method of Zienkiewicz et al. [15] is thus proved. 

2. Error Analyses. Recently, an analysis for this method for the Poisson equation 
on an unbounded domain was given by Johnson and Nedelec [6]. Here, we shall give 
the analyses of this method for general cases. 

Define a norm on H as 

(2.1) ivIIH = [|iV1I2I(SI) + IV IHI(S)1 1/2 

where * Hi(s,) and 11 * H(S2) are the norms in the Sobolev space. Then H is a 
Hilbert space. 

For simplicity in analyses, suppose that S is a convex polygon, Fo is a piecewise 
straight line (Figure 2), and the effects from the nonconforming element on F are 
not taken into account; otherwise, see [3], [11]. Then, we have 

y 

,~~~~~~ x 

FIGURE 2 
The division in the combined method 

THEOREM 1. Let (1.8) be given, and suppose that the bilinear form in (1.11) is 
uniformly Vho-elliptic, i.e., there exists a positive constant a independent of h and N 
such that 
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Then, the solution u of ( 1. 1 1) has the error bounds 

(2.3) ||u - u*||H < inf ||u - i7v|H. 
wECV 

Proof. Let u be the solution of (1.1) and (1.2) under the condition (1.8). Since u 
and au/an are continuous on 1o, we see from Green's theorem and (1.14) that, for 
any v E Ho, 

(2.4) B(u, v) aI fv + - VI + 8 v2 + -VI 2a JJvJ7tJ~an +13y-an an 

Jfv+ j an - anuj 2u fv. 

Hence, the true solution u also satisfies (1.1 1). We have 

(2.5) B(u-uu, w) = O Vw E Vh, 

Since v2 satisfies the homogeneous equation (1.9) we find from the trace theorem 
of Lions and Magenes (8] (also see Babuska and Aziz [2, pp. 32-33]) that 

(2.6) aV2 < KIIVIIHI(s), an H-112(r-0) 

with a bounded constant K. Also, we see from the imbedding theorem of Sobolev 

[10] that 

(2.7) IIVIIIHI/2(rv) ? KIIIvIIH,(s). 

(Throughout, the notation K1 represents a generic constant with possibly different 
values in different contexts.) Thus we have from (1.12a), (2.6) and (2.7) that, for 
v E Ho and we Ho, 

(2.8) IB(v, w)I MIIvIIHIwIlI 1 an W,V + an VI|] 

IVlIIHIWIIHwlH + Max:{| aV2 || WI IIH1/2(F) 

+ aw2 1/ VIIIHI/2(ro)} an H- 1/2( r0) 

< KIIIVIIHIIWIIH, 

So, the bilinear form B(v, w) is bounded on Ho 
Let wv E Vh be arbitrary. We then see from (2.2), (2.5) and (2.8) that 

aIIu - VI, < B(u* - iv, u* - W) = B(u - 
Wv' u* - 

W) 

< KIIIU 
- 

WlIHIIUh 
- 

WIIH. 

Hence, 

(2.9) IIu* - WIIH 'l 1 Iu I h IIH a 
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Thus 

(2.10) IIu- Uh*11H - IIU wIIH + IIw uh IIH Uh (1 I +K a)u- 1 IIH. 

Consequently, inequality (2.3) is obtained. Theorem 1 is thus proved. D 
Theorem 1 is an optimal estimate of errors for the simplified hybrid-combined 

method (1.1 1). 

THEOREM 2. Let (1.8) be given, and suppose that u E Hk?l(SI), the k-order 
Lagrange finite element method is used on S1 and the uniformly Vh-elliptic inequality 
(2.2) holds. Then 

(2.11) liu - Uh*11,f < K hk 
|U|Hk+l(SI) 

+ [1 IIHRr0 aRn |?O) } h. -NuIIH 
p L 

o) an 
Ho(F)_ 

where R N is the remainder of an approximate expansion u N of u, which is expressed as 
N 

(2.12) UN ai , 
1= I 

with the expansion coefficients al. 

Proof. Let uh be the piecewise k-order Lagrange interpolation polynomial of u on 
the triangulation of S1. An auxiliary function w is constructed such that 

(2.13) w={ UhI (X, y) E Si, 
(2.13) 

W= 
~~~UN, (XI y) E_ S2' 

Then w~Y E Vh*. We obtain from Theorem 1 that 

(2.14) IIu - u7<H ? K, inf I|u - WIlH < Klllu - wIIH. 
W Vh* 

Moreover, we see from (2.2) that, for 8 = u -, 

(2.15) allu - W112- a=j3jj2 -< B(8, 8) 

=J [#(V6)2 + C32] + j[(V,8)2 + C62] 

KK1 IU - 
Uh 11 Hl(S+) +S [/3(VRN) + CRN]- 

Then, 

(2.16) IIu - u*IIH < K (IIu - 
UhIIHl(S) + {f[f(VRN)2 + CR2J} 1/2 

Note the error bounds for the finite element method [2], [3], [ 1], 

(2.17) ||u- uhhlJHI(S,) < klhklu Hk+l(s,). 

Next, the remainder RN satisfies the homogeneous equation (1.9). Then we have 
from (1.14) that 

(2.18) f [/(vRN)2 + CRN] f I3RNdan KRIIIJR aRN N NN a NIHp(o)an Ho0(r0) 
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Inequality (2.1 1) is obtained by combining (2.16)-(2.18). Theorem 2 is proved. D 
Now, let us examine the uniformly Vh?-elliptic inequality (2.2). The bilinear form 

for u v E Vho is 

(2.19) B(v, v) [#( VV) + CV2] + f[8( VV)2 + CV2]. 

Since v IrA s, = 0 for v E Vh0 and Meas(F A S1) > 0, we see from the Poincar& 
Friedrichs inequality [3] that there exists a positive constant a, independent of h and 
N such that 

(2.20) a l llvlIH(S,) <f [3( VV)2 + CV2]. 

Similarly, if Meas(r n S2) > 0, we also have the inequality 

(2.21) a2I1VIHI(S2) <f [3(Vv)2 + cv2], 
S2 

with a2 a positive constant. Hence, the uniformly Vho-elliptic inequality (2.2) holds 
from (2.20) and (2.21). 

However, in the general case S2 might be all inside S, i.e., Meas(F A S2) = 0. 
(2.21) can also hold provided that the function c in (1.1) satisfies 

(2.22) c=c(x,y)ZO onS2. 

(This proof is like that in Ciarlet [3].) Then, 

LEMMA 2.1. The uniformly Vho-elliptic inequality (2.2) holds provided that either 
Meas(T/ A S2) > 0 or (2.22) holds. 

Remark 2. For the case where neither of the conditions in Lemma 2.1 holds, for 
example, if 

(2.23) F*u - a , au - a , au = O, (xI y) E S2, a ax ax ay 

with S2 inside S, the uniformly Vho-elliptic inequality (2.2) does not hold because an 
arbitrary constant is permitted for the admissible functions vh on S2. 

In this case, the spaces H and Ho shall again satisfy a constraint condition, for 
example, fS2 V = 0. Then, we may define the spaces 

(2.24a) H*= {v E L2(S), v E H'(S,), v E H'(S2), 

,*v = 0 on S2 and fv = 

and 

(2.24b) Ho* ={v E H* and v l=}. 

Moreover, let the subspaces Vh* E H* and Vho E Ho*. Therefore, the corresponding 
uniformly elliptic inequality on Vho E Ho* for the simplified hybrid-combined method 
still holds so that the combined method (1.11) and Theorems 1 and 2 all are valid. 
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3. The Strategy for Solving the Algebraic Equation System. An algebraic equation 
system is obtained from (1. I 1) 

(3.1) Av + Ed = b1, 

(3.2) -ETV + Dd = b2, 

where v is the unknown vector with the elements v1 J, d is the unknown vector with 
the coefficients a,, b, and b2 are known vectors, A, D, E and ET are matrices, and 
ET is the transposed matrix of E. 

The matrix A is positive definite, symmetric and sparse because it comes from the 
integral Js,[[8vvvw + cvw], and the matrix D is also positive definite and symmet- 
ric because it comes from the integral fS2[3vvvw + cvw] (see (2.21)), and the 
matrices E and ET are from the integrals Jprf(av2/2an)wl and Jr,,f/(aw2/an)v1, 
respectively. 

Since the coefficient matrix (_ATE) in (3.1) and (3.2) is nonsymmetric, the 
following strategy for solving them is recommended. 

We see from (3.2) that 
(3.3) d = D-[ETv + b2]. 

Then we obtain, by substituting d into (3.1), that 

(3.4) Fv = b 

with the matrix 

(3.5) F =A + ED-'ET 

and the known vector 

(3.6) b = b- ED-Fb2. 

Obviously, the solution v is easily evaluated from (3.4) because the matrix F is also 
positive definite, symmetric and sparse. Then the solution d is obtained from (3.3). 

Now, let us consider the stability of (3.4), which is measured by the bounds of the 
following condition number of the matrix F: 

(3.7) p(F) = Xmax(F)/'Xmin(F), 

where Xm,x(F) and Xnin(F) are the maximum and minimum eigenvalues of F, 
respectively. 

THEOREM 3. Let there be given either (2.22) or Meas(T/ A S2) > 0. Then 

(3.8) p(F) -K-h-m{ + X max(EET)/Amin(D)}, 

where hmin is the minimum boundary length of triangular elements on S1. 

Proof. Since D is a positive definite and symmetric matrix, we have 

(3.9) Xmax(ED-IET) X 
Xmax(EET)/Xmin(D). 

Also X m(EDI'ET) > 0. Then, we see that 

(3.10) (F) Xmax(A) + Xmax(ED-IET) 

Xmin(A) + Xiin(ED-IET) 

<[Xmax(A) + Xmax(EDEIT)]/nin(A) 

K< max(A) + XmaxN(FFT)/min( D)]/Xmin(A). 
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Hence, (3.8) is obtained from the following estimates in the finite element method 
[11]: 

Xmax(A)? K1, X min(A)= O(h2min) 

Theorem 3 is proved. L 
It is shown in Theorem 3 that the condition number p(F) will not be too large if 

the ratio of Xmax(EET)/Amin(D) is not too large. 
As to (3.3), the analysis of stability is obvious. 

4. Examples. In this section, we take the following model problem as an example 
for the application of the simplified hybrid-combined method (1. 1 1): 

(4.1) -Au + u =f, (x, y) E- SI, 
(4.2) -Au + u = O, (x, y)ES2, 

(4.3) u = g, Fxy . 

The condition (2.22) holds because of c -1 on S. 
The solution u on S2 can be expanded, with the help of the method of separation 

of variables (see Tikhonov and Samarskii [12]), as 

N 

(4.4) u OIO(r) + E Ij(r)[dncos n6 + bnsin nO] + RN, a 
1 

where da and b,n are expansion coefficients, RN iS the remainder, and I"(r) is the 
Bessel function for a purely imaginary argument, defined by 

?? r 2kqrn 
(4.5) In(r) += 12()2?f 

k-O F(k + I)F(k + n + 2 

Then, the admissible functions should be taken as (Figure 2): 

Vk, (x, y) E SI, 

(4.6) V = N 
{ a0IO(r) + , In(r)[ancosnO+bnsin n], (r,O) ES2, 

n= 1 

where an and bn are unknown coefficients, and Vk are piecewise k-order Lagrange 
polynomials on the triangulation of SI. 

The basis functions IO(r), I"(r) cos nO and I"(r) sin nO all satisfy (4.2). So, the 
space V* consisting of (4.6) does belong to H, as defined by (1.lOa); similarly 

1hh E HO.Therefore, an approximate solution can be calculated from the combined 
method (1.1 1) and Theorems 1-3 hold true. 

Next, consider a singularity problem of a crack lying on the axis x, with the 
following boundary condition on the crack (Figure 3). 

(4.7) Ujr = O (y-O and x O> ). 

There exists a singularity at the origin, which is placed on S2 (see Figure 3). The 
solution on S2 can be similarly found as 

2N 

(4.8) u = anI,/2(r)sin2 + RN, 
n = 1 
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with the coefficients da and the remainder RN. Obviously, the derivative au/ar is 
unbounded when r -O 0, so that the numerical solutions of the single finite element 
method or the single finite difference method only have a poor precision [ 1]. 

S1~~~~ 
r 

x 

s2~/ 

FIGURE 3 
The crack problem 

Here, we use the combined method for solving the crack problem and take the 
admissible functions: 

[Vk (X, y) E Si, 

( ) t z~~~~ aInnlJr)sin-08 (r, 0) E_ S2, 

with the unknown coefficients an and the basis functions I472(r) sin n0/2, which 
satisfy (4.2) and (4.7). 

It is worth pointing out that even for the singularity problems, Theorems 1-3 still 
hold. 

COROLLARY 4.1. Suppose that the conditions in Theorem 3 hold, and uJr. has 
bounded partial derivatives of order ,u. Then, the solution u* of (1.11) satisfies the 
following error bounds: 

(4.10) |u - U IH ? Kl [hkIUlHk?(S) + N /2i 

Proof. For the remainders RN in (4.4) and (4.8), we see from Eisenstat [4] that 

IIRNIIHO(pO) s K1-I and aRn < K1I 
I 

NT ann H1(ri) Nilo f 

Then, (4. 10) is obtained from Theorem 2. D 
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The corollary leads to 

(4.11) ||u- Uh11h < Klhk 

provided that we choose the optimal integer 

(4.12) N = Nopt = O(hk/(-l/2)) 

In this case, the total number of unknown quantities in (1. I 1) is 

O(h-2) + o(N0pt) = O(h-2) + O(h-k/(l-1/2)). 

Generally, y > k + 1, and then the number N of the unknown coefficients a,, and 
bn is less than O(h-'), which is much less than O(h -2). The latter is the number of 
element nodes in the finite element method. Hence, the calculation and storage space 
in the combined method (1.11) are substantially less than those in the single finite 
element method on S. 

Obviously, the larger S2 and M are, the less the calculation and storage space in 
(1.11) are. Corollary 4.1 still holds for general elliptic equations if we take the 
admissible functions according to the expansions of solutions in Bergman [1] and 
Vekua [14]. 

Concluding Remarks. According to the above analyses, the combined method 
(1.11) with the simplified hybrid trick should be used for singularity problems and 
unbounded problems, instead of the single finite element method. Also, we recom- 
mend that the combined method (1.11) be used for common boundary value 
problems of elliptic equations if there exists a large subdomain where the solution is 
sufficiently smooth. Finally, we would like again to remind the reader of the 
necessary condition (1.8) for the combined method in this paper. 
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